The members area will be coming soon

Nominations for the 2020 International Fisheries Science Prize

The International Fisheries Section of the American Fisheries Society is requesting nominations for the International Fisheries Science Prize (IFSP). The IFSP honors an individual for his or her contribution to global fisheries science and/or conservation and is presented once every four years at the congress of the World Council of Fisheries Societies. The Prize will consist of a commemorative medal, a plaque, and $5000 USD. This year’s Congress meets during 11-15 October 2020 in Adelaide, Australia.

Nominations for this Prize have no restrictions, and are encouraged from all countries. They must be made by individuals who belong to member societies of the World Council of Fisheries Societies (WCFS). All nominations shall be new or renewed at the beginning of the process. The Prize recipient will be selected by early autumn 2019, based on nominations submitted to the International Fisheries Science Prize Committee and received by midnight, Pacific Standard Time, 31 May 2019.

The Prize Committee that will present the candidate selected to the Executive Committee of the International Fisheries Section is composed of representatives appointed from member societies of the WCFS that contribute to the Prize, and past recipients. All nominations are kept confidential by the Committee, both before and after the prize is awarded.
There is no nomination form. Nominations require: 1) a cover letter of no more than two pages describing the outstanding contributions the individual has made to global fisheries science and/or conservation; 2) letters from at least 5 but not more than 10 references in support of the nomination; and 3) a current curriculum vitae. Nominations and reference letters must be submitted in English (translations acceptable).

Criteria for selection will include the breadth, significance, and duration of the nominee’s achievements, especially those of a global perspective and scope. Nominations and reference letters should address the candidate’s contributions at the local, regional, and international level to the understanding of fisheries science and/or conservation, education and mentorship of other scientists, and engagement with the public and policy issues. Although candidates are not expected to excel in all areas, the breadth and depth of their work, especially at the international level, and important contributions that have transformed their fields are key points considered by the committee.

Please submit nominations electronically to: Kurt.Fausch@colostate.edu
Dr. Kurt Fausch, 2020 Chairperson, International Fisheries Science Prize Committee

PhD Studentships: Integration of Sea Angling Associated Catch and Mortality for Stock Assessment

Graham Monkman

University of Bangor & CEFAS

There are c. 1 million recreational sea anglers (RSA) in the UK, spending annually over £1.2 billion and their removals of marine fish can be quantitatively comparable to commercial landings, as revealed by landings of the European sea bass, Dicentrarchus labrax. Hence angling removals should be included in stock assessments and fisheries management, accounting for catch and release and post-release mortality rates.

RSA catch has only been included in stock assessments of Baltic cod; a gap recognised by the European Commission, and in the Common Fisheries Policy that requires members to report on catches by RSA for some species to give a clearer picture of how fishing affects stocks. RSA data on commercially significant species are also required at a local level under the Marine and Coastal Access Act to provide an evidence-base when balancing the needs of marine environment users. However, national RSA assessments are expensive and complex, especially in the UK where sea angling is unlicensed, so there is little evidence to inform the development of a policy for UK sea angling despite the sector’s importance.

My research will seek to scope, develop and validate transferable, innovative techniques in the capture of RSA data on marine fish species of recreational and commercial importance, primarily within ICES ecoregions E and F. This work will comprise three synergistic strands:

To engage with the UK RSA community to determine the extent of existing catch data recorded by anglers and to collate those data to construct time series of catches and compare against existing fisheries independent and dependant time series.

To develop, evaluate and pilot practical, reusable low cost technological solutions to complement RSA data recording, including natural language processing of social media sources; machine vision in species identification, and optical character recognition in form processing complemented with SMS, email and mobile solutions and their application to local and national angler survey programmes.

To evaluate the viability and define success criteria for a citizen science programme on the ongoing assessment of recreational sea angling, based on the outcomes of the preceding strands.

Contact:
School of Ocean Sciences
Bangor University
Menai Bridge
Anglesey
LL59 5AB
UK
Email: gmonkman@mistymountains.biz

PhD Studentships: Differential Susceptibility to Copper in Wild Populations of Three-Spined Stickback (GASTEROSTEUS ACULEATUS)

Lauren Laing

University of Exeter

Supervisor(s): Eduarda Santos & Rod Wilson

Most aquatic environments in the UK and worldwide have been affected by anthropogenic environmental stressors. Such stressors vary from chemical pollution to habitat fragmentation and to changes in abiotic parameters such as temperature and dissolved oxygen or carbon dioxide. Populations of fish inhabiting these environments are often exposed to combinations of stressors and, as a result, their sustainability is critically dependent on their ability to adapt to the local environment. Despite this, legislation to protect the environment from chemical contamination is often based on toxicological measurements conducted under optimal laboratory conditions and that does not take into account the variation in susceptibility of wild populations or the multiple stressors affecting these populations.

For metals, extreme cases exist of fish populations that can survive in highly contaminated waters, including a brown trout population in the River Hayle, where concentrations of metals far exceed the LC50 for this species. Furthermore, even for populations of fish inhabiting relatively un- impacted waters, their toxicological responses to metals can vary significantly. This highlights the need to understand natural and exposure-induced variations in the response of fish to pollutants, in order to appropriately manage and protect fish populations in their natural environment.

My research explores three key questions, firstly to determine if wild populations of three spined sticklebacks exhibit differential susceptibility to copper and if those characteristics can be inherited under control conditions. Secondly, my research aims to determine if differential susceptibility can be induced by exposure to copper during early life. Thirdly, I plan to investigate the fitness cost associated with differential susceptibility to copper in this species.

Together, this research will allow for a greater understanding of the variation in the responses to chemical stressors in wild populations, how they are induced and maintained and what are the consequences of changes in susceptibility to a pollutant on other parameters of fundamental importance to population sustainability. The data will build on previous data generated at Exeter, and will have implications for toxicity testing and regulation and for the management of wild fish populations.

My report on my attendance at the Canadian Conference for Fisheries Research is here

Publication
Uren Webster, T. M., Laing, L. V., Florance, H. & Santos, E. M. 2014. Effects of glyphosate and its formulation, Roundup, on reproduction in zebrafish (Danio rerio). Environmental Science & Technology 48, 1271-1279.

Contact

Biosciences
College of Life & Environmental Sciences
University of Exeter
Exeter
EX4 4QD
UK

Email: ll292@exeter.ac.uk

PhD Studentships: Fish Ecology of Mesophotic Coral Reef Ecosystems

Dominic Andradi-Brown

University of Oxford

Supervisor(s): Alex Rogers (Oxford) and Dan Exton (Operation Wallacea)

Mesophotic coral reef ecosystems (MCE) occur in tropical regions extending from 30 m to the limit of the photic zone, c. 150 m. These reefs are often connected to shallow coral reef ecosystems, where it is suggested they provide an important reservoir of recruits for coral and fish populations. Existing reef fish studies are highly depth biased mostly < 30 m, making the importance of mesophotic reefs to overall reef resilience in the face of human disturbances such as overfishing largely unknown, with a lack of evidence for whether fish populations on shallow reefs and adjacent MCEs are connected. This study addresses this important information gap by using advanced diving technologies coupled with a newly developed stereo-video system and molecular ecology techniques to better understand fish communities by examining fish biomass distributions and community structure down depth gradients from shallow reefs to MCEs and by exploring the connectivity of MCE fish populations down depth gradients with shallow reefs and between mesophotic reefs. This project is being conducted in partnership with Operation Wallacea with fieldwork principally based at their field site on Utila, Honduras where MCEs connected to shallow reefs have been identified but are unstudied. The aims of the project are twofold, first to Investigate biomass and community structure. Fisheries value and ecological service provision requires biomass to be quantified as it provides a better indication of functional pressure exerted by a fish-feeding guild than richness or abundance. Fish biomass along transects will be assessed by stereo-video surveys capturing the shallow reef to MCE gradient at various fished and protected sites. Biomass will be standardised using fish length-weight relationships, through data from local fisheries monitoring programmes to obtain local length to weight ratios, but for any fish species not caught locally, through available datasets (e.g. Fishbase). To allow patterns in fish biomass and community structure to be explained, benthic composition will be quantified using point intercept video transects, quantifying coral (genera and morphology), algal and other coverage. Physical parameters will also be recorded including temperature, light and turbidity and HOBO loggers for detailed year-round temperature and light readings. The second aim is to Investigate connectivity in MCE fish populations. Levels of population connectivity between populations of depth-generalist fish species with residents found on both shallow reefs and MCEs are not known. This has major implications for conservation and sustainable management of MCE fisheries, as well as the design and location of marine protected area networks. Many studies have demonstrated the ability of molecular techniques such as microsatellites to identify population structure; these protocols can be applied to assess connectivity down depth gradients and between MCE specialist species on small spatial scales. Non-lethal fin clippings will be collected from fish using a hand net and a clove oil anaesthetic mix. Care will be taken to return individuals to the reef where they were caught. To assess connectivity along depth gradients, samples of depth-generalist reef associated fish will be collected at different depths at several sites. To assess population connectivity between MCEs, an MCE specialist fish species will be identified samples collected at several sites. Contact: Ocean Research and Conservation Group Department of Zoology University of Oxford The Tinbergen Building South Parks Road Oxford OX1 3PS UK Email: dominic.andradi-brown@zoo.ox.ac.uk Twitter: @dandradibrown URL: http://www.zoo.ox.ac.uk/group/oceans

PhD Studentships: Assessing and predicting the impacts of non-native fish parasites: From Hosts to Ecosystems

Josie Pegg

Bournemouth University

Supervisor(s): Robert Britton and Demetra Andreou

The global introduction rate of freshwater fish has doubled in the last thirty years, primarily through fish movements in the aquaculture industry. When fish are moved from their natural range and introduced into a new range, they are likely to be host to a number of parasites. Whilst some of these parasites might be lost during the introduction process, often some will remain. If transmitted to native species, infection consequences can include pathological damage and, potentially, modifications to host behaviour, fitness and energetics. Given that native parasites have recently been shown to play important roles in food webs through, for example, increasing connectivity, nestedness and robustness, then further introductions of parasites into ‘infectious food webs’ have potential to modify these food web properties.

My research explores this using three non-native fish parasites introduced into UK freshwaters in order to identify their consequences for individual hosts, assess how these scale up into population and community effects, and determine their modifications to the structure of the invaded food web. Three non-native parasites will be studied which represent groups with varying complexity in their lifecycles so that they can demonstrate how, for example, the number of hosts in the life cycle affects food web structure.

Ergasilus briani has a simple life cycle, involving host-to-host transmission in their preferred host species of roach Rutilus rutilus and common bream Abramis brama. Bothriocephalus acheilognathi has a complex life cycle involving intermediate hosts before their definitive fish host becomes infected, where the final host here is common carp Cyprinus carpio. Anguillicoides crassus also has a complex life cycle but it involves several paratenic hosts (in which the parasite remains immature) before being transmitted to its preferred definitive host, in UK waters the European eel Anguilla anguilla. Transmission to eels is often through predation of a paratenic host.

Using both field case studies and experimental mesocosms the consequences of these parasites for food web structure will be assessed using two principal methods: food web topology and stable isotope analysis.

My report on my attendance at the Canadian Conference For Fisheries Research 2014 is here.

Contact

Faculty of Science and Technology
Bournemouth University
Talbot Campus
PooleBH12 5BB
UK
Email: jpegg@bournemouth.ac.uk
http://staffprofiles.bournemouth.ac.uk/display/jpegg